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Recently, Bramson proved a theorem that classifies the initial data under which
solutions of the K-P-P equation converge to the appropriate travelling waves. In
this paper, a simplified proof is given by using ‘maximal principles instead of his
Brownian motion approach. The regularxty condition on the forcing term is also
_weakened © 1985 Academic Press, Inc.

1. INTRODUCTION

In this paper, we will consider the semilinear diffusion equation

Ou 1 0%u

| ,81 20 + F(u), | | (1.1)

where the forcmg term F i is assumed to be in C'[0, 17 and satisfies the con-
ditions

F(O)=F(1)=_0,A F(u)>0 for O<u<1
and | |
F0)=1,- Fu)<l1 for O<u<xl1.

One of the main interests of this equation is the asymptotic behavior of the
solution for large time. This problem was first investigated by Kolmogorov,
Petrovsky, and Piscounov [7] under the Heaviside initial data, and was
applied to study some population genetic models by Fisher [5]. We will
call such an equation the K-P-P equation. During the past 2 decades,
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there has been a considerable amount of work done on this subject (e.g.,
Aronson and Weiberger [1,2], Bramson [3], Fife and McLeod [6],
- McKean [8] and Uchiyama [9]). For complete references and develop-
ment of this subject, the readers may refer to Bramson [4]. :

Let u(¢, x) denote a solution of (1.1). By a travelling wave with speed A
we mean a function w* which satisfies

wh(x) = u(t, x + At), —ww<x<oo, t=0.
Clearly, w* satisfies the ordinary differential equation
wl + Awt + F(w?)=0.

By excluding trivial cases, we may assume that w(—co)=1, and w(oo) =
A 31mple phase plane analysis shows that for nontrivial 0 < w* <1 to ex1st
it is necessary that 1 =2 ([3,4,9]). Let b= A—./A*—2; then for /1>\/§
wh(x)~ce™?* for large x, and for A=./2, w’l(x)~'cxe_\/5" provided that
F'(u)=1-—o0(u”) for some 0< p< 1. Recently, Bramson [3] proved the
following theorem, which classifies the approach of initial data to
appropriate travelling waves.

THEOREM. Suppose F satisfies (1.1) and the additional condition F'(u) =
1 —o(u?) for.some 0 < p< 1. Then

(1) For /1>\/_,

u(t, x +m(t)) - wi(x)

uniformly in x as t — oo for some choice of m(t) if and only if for some (all)
h>0,

1 (1+h)x . :
lim —log u(0, y)dy= —b (1.2)

x—>o0 X X

(b=A—./A*~2), and for some n >0, M >0, N>0,

X

x+N ’ )
J w0, y)dy>n  for x< —M. T (13)
(1) For the case A =./2, condition (1.2) can be replacéd by
(1+ h)x

1
Iim ——log u(0, y)dy < ~\/§.

x>0 X

In particular, the sufficient conditions considered by Kolmogorov,
Petrovsky, and Piscounov [7], and Uchiyama [9] are special cases of the
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theorem. Also, Bramson showed that for A>./2 the above m(t) can be
chosen as sup{x: ¢(¢, x)=>1}, where ' .

. ;[ e~ (X »x

#ix)=e' | uO, N

For A= ﬁ, and _ff;‘? xeﬁ"u(O, x) dx < oo, m(t) can be chosen as
m(t) = \/Et— 3- 2_3/2.10g L

for f& xe\/_"u(O x) dx = o0, the centering term m(¢) has been obtained for
‘certain important classes of initial data. For example, if h(x) = eﬁxu(O x)
‘has order 0(x"), y >0, then m(t) can be chosen as -

m(t)=1/2t—3-2""log t + b(z),

where b(t) = (1/\/5) log[|& xh(x)e " dt] v 0. ,

Bramson’s proof is mainly probabilistic, i.e., it depends heavily on the
Feynman-Kac formula and some Brownian motion methods. The proof is
rather lengthy, especially for the case A = \/5 In this paper, we will give a
simpler analytic proof of the same theorem, with a slight relaxation of the
hypotheses on F.

The main part of the proof is on the sufficiency. The estimation depends
on an implicit expression of the solution (see (2.2)). The basic tool is the
extended maximal principle, which has been used by McKean [8],
Uchiyama [9] and Bramson [3]. Our poof is divided into two parts: For
the case A > ﬁ, where the initial data satisfy (1.2), we will show that for
some ¢>0, the solution behaves “nicely’ on the curve {(0,x): x<0}u
{(ex, x): x>0} so that Uchiyama’s argument can be modified. For the case

- A=./2, we will approximate the initial data f by:

f(X)—(f(X)+e eTM) Al

where b = \/— 26 for some sultable 5 > 0. The new function f, satisfies the
smooth conditions of Uchiyama (f can be assumed differentiable).
Moreover, if we let

dy.

m(t) = Sﬁp{x: u(t, x; f) =4}

and let m’(t) be the corresponding function for f,, then m’(¢) will be close
to m(t) for a long period of time (say, 0 <t<r/46, Lemma 3.3), and then
drift away for large values of ¢. Letting ¢, = r/46, we are then able to apply
the extended maximal principle to compare u(z,, x +m(t,); f) with w(x)
(\/—2-—45 =A—./A*—2) via f, (ie., compare the functions before m’(¢)

drifts away from m(t)).
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Our paper is organized as follows: In Section 2 we give some
preliminaries for the K-P—P equation. We prove the sufficiency for the case
A= ﬁ in Section 3. The proof of the case 1> \/5 is in Section 4, whereas
its lemmas are proved separately in Section 5. In Section 6 we prove the
necessity of the theorem.

2. THE K—P—P EQUATION

Let p,(x)=p(t, x) denote the normal density 2t e T =32 et
0< /<1 be initial data and let u(z, x; ) = u(t, x) be the solution of the
K—-P-P equation (1.1). It follows from a simple application of the fixed
point theorem that u(z, x) satisfies

us ) =pox SO+ [ [° pli—s,x— ) Futs, ) dy s, @2.1)

and O<u(f,x)<1 for —w<x<oo, 120, Let F(u)—u—G(u) then
0<6(u)<wu and lim,_,0(u)/u=0. By using a recursive argument we
obtam :

u(t, x) = e'p, * f(x)— E(x, 1), L 2)
where

. E(x, t) = e fol eQA- JOO p(t—s, x— y)O(u(s, y)) dy a'skT |

For the linear diffusion equation

v 1 0%
or 2 0x?

+v

w1th initial data /, the solution is v(t x) =e'p,* f(x). Obv1ously, u(t x) <
v(t, x) for —0 <x< o0, t=0.
Throughout, we will assume that f satlsfles either

1 (1+/1)\'
o<f<l, lim —log|  fl)dyv<—b (23)

x—s00 X X

or

. :1 Cr(+h)x
0<f<1, lim --1ogj f(»)dy= —b (2.4)

X — 0O .
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where O<b<\/§, and & is some (and hence any) positive number. It: is
~ clear that (2.3) ((2.4)) is equivalent to

AL+ h)x ,
[ rmay<(=yermeom (25)

LEMMA 2.1. Supposefsatisﬁes (2.3); then for any 0<t,<t, O<b' <b,
(1) lim, _, ., e"*p, * S(x)=0 uniformly for t,<s<t,
(ii) p, * f satisfies (2.3) (and satisfies (2.4) if [ does).
Proof. (i) Follows from the 'following inequalities: for 1, < s < ¢,
1+ h)x (1 —h)x ‘
po* f(x)< pls, x— y)f(y)dy+2j pls, x— y)dy

(1—h)x

1

/2Tt

(1) Inequality (2.3) also follows from the above inequality. To show
that (2.4) holds, we need only make use of the following:

<

e~ (b+o()x Zﬁe—hzxz/m'-

—1/2¢

*f(x)> p(tx y)d(y)dy> S(y)dy. I
[ S

x—1

LEMMA 2.2. Suppbse. f - satzsfzes (2.3), then for .- any >0,
Iim, , o, E(z, x)/e'p, * f(x)=0. ’
Proof. For any &> 0, there exist 8, x,>0 such that
(1) 0<0(u)=eu for u<s,
(i1)  u(s, y)<5fo‘ryl>x0, e<s<t—e (by Lemma 2.1),
(iii) j"“’oop(t S, X — y)dy<£p,*f(x) x>2x0,£<s<t——8
(Condltlon (111) holds since for x > 2xg, E<S < t— g, |

e~ — xo+ k)42(e — - 5)

X0 s, B d \v 0
J-_oop(t 5 y) y<k§0 «/27I(l'—S)

wheréas p,* f(x)=ke ™ for some k>0). Hence: ‘for x>2x,,
e<s<t—e¢, R o

='0(e—(x'—xo)2/21)
: ’

x0 X0

| p(e=s.x =) 0uls, ) dy<e [ plt—s,x=y)uls, y)dy (by (), (i)

<aesf plt—s,x—y)p,* f(y)dy

=ee'p, x f(x).
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This, together with (iii), yields -

[ ple—s, x— y) O(uls, )) dy <2sep, + ().

Therefore for x> 2x,,

0< E(t, x)—e (j +j j ) Sjw pli—s, %= ) 0uls, ) dy ds

<dete'p, * f(x). |
This implies lim, ., E(t, x)/e'p, * f(x)=0. 1

'PROPOSITION 2.3. Suppose [ satisfies (2.3), ((2.4)), then for any t>0,
u(t, x) satisfies (2.3) ((2.4), respectively), and for any 0 <b' <b,

. - . .. 0
lim e”™u(t, x)= lim e®~—u(t, x)=0.
0x

X — OO X — OO

Proof. The first statement and the first limit follow from Lemmas 2.1,
2.2. To prove the second limit, we need only observe that

:y p(t, x— ) f(y)dy=0,

(o 0)
1im ebe

X — 00 — oo

and

x__

. O0E(t, x) [~
1
x1—>n:o 5x /f—m

(The proof is similar to Lemmas 2.1 and 2.2.) This implies that

> l p(t, x~ ) f(y) dy =0.

lim ¥ %= fim o (e p,x f(x) = E(t, %)) =0. |
0 ox " " 0x

X - 00 X X — o0

The following maximal principle holds for the K-P—P equation, it can be
derived from [3, Proposition 3.1].

PROPOSITION 2.4. Let g, h be initial data of the K-P-P equation and
0<g<h<, then
O<u(t, x; h)—u(t, x; g)<v(t,x; h— g), —o0 <x< 00, t=0.

Let g, h be two measurable functions on R; according to the notation of
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Bramson [ 3, 4], we say that g is more stretched than h, denoted by g = h or
h< g), if for any ¢ >0, and x; <x,, .

g(x;)=h(x;+c)= g(x2)>h(x2+‘_c).

Intuitively, g = h says.that A falls faster than g(x) as x increases. If g and A
are differentiable, then g3 A means that g lies above # in its mutual phase
plane. The following theorem was proved by McKean [8] by using the
Feynman-Kac formula and Brownian motion (see also [3,
Proposition 3.2]). It can also be proved by analytic methods ([9
Proposmon 341)”

THEOREM 2.5 (Extended maximal principle). Let 0< g, h<1 be initial
data of the K-P-P equation, and assume that g=h. Then
u(t, x; g) 2 u(t, x; h). Moreover, '

u(t, x +mé(t); g)=u(t, x+m"(t);h), x=0
<u(t, x+m"(t); h), x<O.
where m8(t)=sup{x:u(t, x; g) =1}.

~In Section 5, we will need a more general form of the extended maximal
principle. For any ¢>0, let {, denote the curve

((x)=¢ex if x=0

=0 if x<0.

THEOREM 2.6. Let 0< g, h<1 be initial a’ata of the K-P-P equation.
Suppose there exists an € >0 such that

u(C.(x), x; g) Zu(l,(x), x; h),

then for each t >0,

u(t, x; g) 2 u(t, x; h), —o<x<e L

The proof is the same as Theorem 2.5 with some obvious adjustment,
both in analytic and probabilistic approaches. , :

We will conclude this section with two more propositions ([3,
Lemma 3.3, and Corollary 1 of Lemma 3.27).




K—P—P NONLINEAR DIFFUSION EQUATION 51

- PROPOSITION 2.7. ' There exists a constant ¢ such that for: any O < g, h < 1
with g(x)=h(x) for x = x,, then = L

lu(t, x; g) —u(t, x; h)| < et =% (2.6)

forx>x0+\/—t 27>2logt.

- For 2> ./2 if both u(t, x + m8(1); g), u(t, X + m(0); h) = wi(x) umformly
as't— oo, and satisfy (2.6), then it is easy to show m*(t)—m"(t) -0 as
t — 00. :

PROPOSITION 2. 8. Let f be initial data satisfying (2.3). Suppose
u(t, x + m(t)) - wl(x) uniformly in x with t "o for some m(t) as A >\/§
then m(t)/t — A as t — oo.

3. THE CASE A= \/5
In this section, we _will prove the following theorem:

THEOREM 3.1. Let the K-P-P equation and F be defined as in (1.1). Let
0< f<1 be initial data and satisfy (i)

lim —logf““'”f(y) dp<—y2 @D

X — O

for some h>0, (ii) for some n>0, M>0, N>0,

fx+Nf(y)dy>n for x< -—-M (3.2)

X

Then u(t, x + m(t)) - wﬁ(x) uniformly on x as t - co.

Let H be the Heaviside function and let Jf be defined as above, then
H< f, and by Theorem 2.5,

u(t, x+m(t); f) =z u(t, x + m”(r); H), x=0
<u(t, x +m"(¢); H), x < 0.

It is well known that u(¢, x + m*(¢); H) converges to wﬁ(x) uniformly on
x as t — o0. Hence for any ¢ >0 and for ¢ large,

u(t, x+m(t);f)>w‘/5(x)——e, x=0 o
: . (3.3)
< wﬁ(x) +¢, x<0.
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The main effort is to prove the reverse mequahty, ie., for any ¢>0 and ¢

large,

u(t, x +m(t); f)<wY(x)+e x>0

_ 3.4
>wV(x)—s  b(1)<x<O, oy

where b(t) > —oo as t — co. Thus (3.3), (3.4) imply that u(z, x 4+ m(t)) con-
verges uniformly on [ — N, c0) as ¢t — oo, for any positive integer N. Con-
dition (3.2) will enable us to conclude that the convergence is actually
uniform on.(— o0, c0). . . :

By Proposition 2.3, we may assume w1thout loss of generahty that fis
differentiable and for any &> 0,. f(x), f'(x)<e=~2-9* for large x. We

define

f(x) = (f(x)+e e 220Xy A 1,

. LEMMA 3.2. There exists rs>0 such that for x >r>rg,
S1x) < —(/2—38) f().

Proof. Let ry be such that for x> r,,

Fx), f/(x) <e~WE0

Let c=4 ~!log(1 +\/_ 36)—log ), and let Ps= r0+c then it is easy to
show that for x >r>ry,

fix)=[f"(x)— (ﬁ;zg)e—ﬁre—(ﬁ—za)x
< —(4/2-38) fi(x).

LeMMA 3.3. Let 6 >0 be fixed, and let r/46 <t < (1 + 35)r/45 then for :
x=(J2-36%)1,

0<u(t, x; f,)— ult, x;f)<’71(’)2‘ ,

where 1,(r) >0 as r » oo.

Proof. By using the maximal principle (Proposition 2.4), we have
Ogl’{(ta x;fr)_u(t, X;f)sv(ta x;fr_f)a

where v(t, x; g) = e'p, * g(x). It follows that for x> (\/_2_——§52_)t,
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. U(t,- X; ('fr—f))'éetfOo Plx— p)e e~ W22y dy B

— ! 0r— (V2 —26)x + (/2 —26)%/2

_ 2 Sr/a &2
<e 5r + (3+/2 + 2)6r/4 + of g

The proof is completed by lettmg the last expression equal #n,(r). ||

Let b=./2—46, A=1/b+b/2 (e, b=1—/22—2). Let w‘(x) be the

. travelling wave w1th speed A and normalized to w*(0)=1, then

lim, _, ,, w*(x)/e~** =, for some ¢ > 0. For each r> r; we define 7 so that
’I(r) f+(r), then there exists r, > r,; such that for r>r,,

Fzr  and 2ce ™ = wA(F) = fi(r) = e~ V2 —8),

(The first inequality holds since wH(r)= f,(r) for large r, and w, is
decreasing.) This implies that

llog 2¢| <1+ 36 >
J2—46 J2—48

Furthermore if r, is chosen greater than [log 2c| /35(\/— 45 —1), then
r <7< (1+4338)r. We define

r=r.

~i

) =wix), x>

=0, x <

N

The followmg lemma is analogous to Proposition 2.7, but different in that
w* and ¢ change according to r.

LEMMA 3.4. Let 1 =F/45, then for x > (A—38%)t,
0 <u(e, x; wh)—u(t, x; wh) <n,(r),
where 1,(r) — 0 as r — oo.

Proof. In view of Proposition 2.4 and the proof of last lemma, we need
only make the following estimation: for x > (1 — 552)t -
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. _ 2ce’ F . ) S .
v(t, x; wh— W) < —== j e IRty gy
: 27U — 00 ’ ‘ \
220 ‘ez—bx+b21/2 fo e—'——(x'—bt——F—y)z/Zl dy
T

A

l\)&’
o
o~

— o0

t—bx + b2 e~ (x — bt —F)2/2t

e

/AN

g

27
2c

2 _ 35232
566%/4 , — (26— ;67)21/2.

-\

[\
3

e

Let n,(r) be the last expression. Slnce r <46t < (1 + 30)r, it follows that
ny(r)—-0asr—o0. |
Let m(s)=sup{x: u(s, x; w*) =1}

" LEMMA 3.5. Let t =r7/46. Then
0 < [wh(x) —u(t, x +m(r); W) <ms(r),  — 4871 <x < oo,
where ns(r) — 0 as r — oo.

Proof. It follows from Lemma 3.4, the strict monotonicity and the con-
tinuity of w* that for large 7, we have (A — 62)r <m(t) < At. Moreover,

0 < wh(m(t) — At) — w*(0)
= u(t, m(t); w*) — 3
= u(t, m(t); w*) —u(t, m(1); w*)
<7lz(")- |

- Again, by the strictly monotonicity and continuity of w* at 0, we have

lim, , (m(z) — At)=0. Now by the uniform continuity of w* and by
Lemma 3.4, we have for —16% < x < o0,

[wh(x) — u(t, x +m(t); wh)|
< [ wH(x) — whx + m(t) — )| + |w(x + m(t) — At) —u(t, x +m(t); wh)|
_ se(r) +ma(r),

where &(r), 1,(r) = 0 as r — co. The proof is completed by letting 75(r) =
e(r)+mny(r). 1
Proof of Theorem 3.1. According to the remark in the beginning of this
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section, we will show that (3.4) holds. Let m(s), m'(s), m"(s), m(s) corre-
spond toithe initial data f, f,, H and w?*, respectively. Then for any s> 0,

m’(s) = m(s) = m"(s) = (/2 — 6?)s.

From the construction of f, and w*, we have f, < w* Let t=7/45, then
Theorem 2.5 and Lemmas 3.3 and 3.5 imply

u(t, x+m(r); £) S WHE) () Fas(r), x>0
I » 5 (3.5)
Zwh(x)—ni(r)—ns(r), — ! <x<0.

Tt remains to replace m'(¢) by m(t). For this we let |
a(r) = u(t, m(2); f,) — u(t, m"(r); f)| =|u(t, m(2); f,) =3l

~Then Lemma 3.3 implies that for r large and for m(z) > (ﬁ— *)t, a(r) <
n:(r). For each r let y be the real number closest to #(¢), so that y < m(z)
and - ' ‘

lu(t, y; W) —u(t, m(t); whl = lu(t, y; w*)— 3l =a(r).
Since J,<w*, we have Osm’(t)—m(tl)g»lﬁ(t)— y<At=y. Also

Iwi(y — A1) = wH(0)] < lu(t, y; w,) — 3 +n,(r)
=a(r)+n,(r)
<n(r) +1(r).
This implies that lim,_,oo(y~—/lt) =10. Therefore, we have m’(t) - m(t) as
t— oo and
u(t, x +m(t); f)=u(t, x +m(t) —m'(t) + m’(t); f)

<WHx) + (1P + 05(F) +14(r)), x>0
' 2
> W (x) = (N(F) 4 15(r) +a(r), = <X <0

where #n,(r) — 0 as r - oo.
To conclude the proof, we still have to show that the convergence is
uniform on (— o0, o0). It suffices to prove that

' 2
u(t, x+m(t); f)— wﬁ(x) uniformly for x < —% tast— oo.
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We may assume, without loss of generality, that a=inf{f(y): y<0)>0
(for otherwise we will use u(¢,, y), t, >0, instead of f"as initial data). Let

H(x)=0, x>0

=0, x<0.
By applying the part we just proved, we see that
u(t, x +mf(1); H)—»wf(x) uniformly on [—N, o), for any N>0, as
t — oo.'Since H is decreasing, a simple application of the maximal pr1n01ple

will imply that u(t x+ma(6); H) - W\/_(x) umformly on (—oo, ) as
t — co. In particular, for any ¢ > 0, there exists 7, and N >0 such that

1>u(t,x+mP(t); Hy=1—¢ for t=t,, x<—N. - (3.6)

Note that lim,_,  m7(t)/t = \/5 (Proposition 2.8), and Iim,_, , m(¢)/t <A
for 1> ﬁ (this can be proved directly by showing that lim,_, ., u(¢, A1) <
lim,_, o, e'p, * f(A)=0, 1>./2). Hence —(6%/4)t+ (m(t)—m?(t)) > —o0
as t — oo. For x < —(6%/4)t, we have

i 1 = u(t, x +m(t); f) = u(t, x +m(t) —mé(t)) +mﬁ(t); FI);'

This combined with (3.6) implies the claim. |

4. THE CASE O0< b < \/5
\ The main theorem of this section is

- TueoreM 4.1.  Let F be as in (1.1) and satisfy F(u)=u— 0(u), where
O(u)=o(ulog™" u) for some p>1. Let 0<f<1 be initial data of the
K—-P—P equation and satisfy: (1) |

‘ ( + h)x ” ‘
lim —logf f(y)dy= —b, (4.1)

X — O

for some 0 < b < \/E and h>0; (11) there exists 1, M, N >0 such that

x+ N .
f(y)dy>n for x< —M. (4.2)

P

Then u(t, x + m(t)) —» w*(x) uniformly on x as t — .

The idea of proof is to show that f behaves nicely on the curve

{(0, x): x<0}u {(ex, x): x>0}
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so that the technique in [9] is applicable by using the modlﬁed extended
maximal principle (Theorem 2.6). S ‘

LeMMA 4.2. Suppose f satisfies (4.1), then for any n>0, there exists €o
and x,>0, 0 <e <eg,y, such that for x> x_,

—(b+ 1) u(ex, x) <u'(ex, x) < —(b—n) u(ex, x).

LEMMA 4.3. Let f, 5 and & be defined as in the last lemma. Then for
0 <e<eg, there exists an x, (dependmg on g) such that for X > x,,

—(b+2n)u(ex, x; f)<u'(ex, x; f),  x=0,
where

f(x)=f(x), x=x

=0, x <

=i

The proofs of these two lemmas are conceptually simple, but dev1ate
from the main proof of this section, therefore we will postpone them to
next section.

Proof of Theorem 4.1. Step 1. We claim that for any J > 0, there exists a
to such that for ¢> ¢,

u(t, x+m(t); f)=w(x)—9, 0<x<e !t

4.3
<wix)+9d, (V2—A)i<x<O0. (43)

Let O<b<b<\/— n=>b—b and I—- 1/b + b/2. Smce w’ is a travelhng
wave,

u(ex, x; wl) =wH((1— Ie)xj.

Let &g be defined as in Lemma 4.2. For 0 <g<¢,, there exists x, such that
for X > Xo, :

W1~ Te)x)) < (b——) W((1—Te)x).

We claim that there is a large X so that for x > 0:

(i) ulex, x; f) < wh((1—Te)x0);
(il) —(b+n/2)u(ex, x; ) <u'(ex, x; f).
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(u(€ex,x;f), u':((:x,x;_f-))’

— T

wX ((1- Xe€)xg)
1 q
] > |

(WA (1=K €)x), (wX((1-Ke)x)))

[y AR S

FIGURE 1

Indeed, a direct estimation of

w(ex, x )= plex, x— y) £(3) dy

X

shows that wu(ex, x; f) is increasing on [0, x——z—:] This combined with
u(ex, x; ) <u(ex, x; f) for all x, u(ex, x; f)<w ((I—Ia)x) for large x, and
wlis decreasmg imply (i). Part (ii) follows from Lemma 4.3.

Let {,(x)=¢ex if x>0, 0 if x<O. If follows from the above construction
that u(¢,(x), x; f) 2 wx(( 1—7¢,)x) (see the definition of stretchness and the
phase plane diagram above). Theorem 2.6 implies that

u(t, x+n"1(t);f)>w1(x), OSJC_‘S{S-—:_II . |
< wl(x), x <O,
and hence we have, from Proposition 2.7, that
u(t, x +m(t); f) = wi(x) — (1), O<x<8-’_1t.»
<wix)+n3(1), k(1) <x<0,

where lim, _,  h(t) = —o0. The clalm now follows by replacing m(r) by
m(t), and by observing that w* — w* uniformly on x as 1 — A.

Step 2. We will prove the reversed inequalities as in Step 1, i.e., for any
6> 0, there exists ¢, such that for t>¢,,

u(t, x +m(t); f)<w(x)+9, O0<x<e™'t

4.4
>whx)—8, (J2—A)r<x<0. (44)
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By assumption (4.2) we may assume that inf,, f(y)>0 and />0
(otherwise, ~we  consider u(fy,x) for some £,>0). = Since
lim, , , u(ex, x; f)=0, for any y>0, we can find z>y so that
u(ex, x; f)=u(ez, z; f) for 0<x <z Let O<5<§<\/§ and let n=b—b.
By applying Lemma 4.2 to fand Lemma 4.3 to w*, we can find ¢ >0, x,, ¥
such that |

(1) u'(ex, x; f)< —(b—n/4) u(ex, x; f) for x = x,,
(i) “—(b+n/4) u(ex, x; w*) < (ex, x; w?) for x>0,
(i) u(ex, x; f)=u(exy, xo; f)(=a) for 0<x< xo, u(ex, x, w*)<a
for x=0

(the second part of (iii) can be done by choosing % large enough and apply
similar argument as in Step 1(ii)).
It follows that u(ex, x; f) <u(ex, x; w,) (see Fig. 2). By Theorem 2.6,

u(t, x +m(t); f) <u(t, x + m(t); w?), 0<x<e Y
>u(t, x +m(t); wh),  x<O0,
and by Proposition 2.7 - |
U u xm; ) <wHx) (), 0<x<el
| W) (), (J2—2)1<x<0,

where n(t) — 0 as t - o0. Hence (4.4) follows by observing that wh — w*(x);
uniformly on — oo <x< 00 as t — 0.

Step 3. The previous argument 1mphes that u(z, x+m(t) ) converges
uniformly on bounded intervals as ¢t — oo. We claim that the convergence is

(u(ex‘,x;W)‘ ), u’(e.x,x;v"v')‘ ))

!

a 1
1

(u(exx;f), u'(ex,x;f))

FIGURE 2
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uniform on (— oo, N), where N is a positive integer. By hypothesis (4.2), we
may assume that inf, ., f(y)>0. For any 0 <b<bd'< \/5, there exists an
x’ such that the function - '
gx)=e="*  xzx'
=e > | x<x,
satisfies u({.(x), x; g)<u({.x), x:f) for all —oo<x<oo. The claim
follows by applying the same argument as the last part of the proof of
Theorem 3.1, with A replaced by g. , ,
The proof of the uniform convergence of u(t, x +m(e); f) on (N, ) is
similar. We assume without loss of generality that f satisfies the condition
in Lemma 2.1. Let .

h(x)=w*"™), x=x"
=1, x<x’,

where \/_2- <A< A", and f(x)<h(x). The uniform convergence of u(¢,
x +m(t); h) to zero on [e~'t,00) implies the same for u(t, x + m(1); f). §

5. PROOF OF THE LEMMAS

We will prove Lemmas 4.2 and 4.3 in this section. Throughout we
assume that f satisfies (4.1). For any O<a, d, e <1 satisfying 0<d <1,

e(b+08) <1, 4/be < 15 /e((b + 8) +4/5) <4./b. Let

_ . ’ 2e 2
_ x=(1—8(b+5))x, h=m, n5=[—\/—5:|

It is obvious that

C1—g(b—9)

| +h=-—20709)
LR PP

1+hx=1—eb—05)x, x—x=¢eb+d)x
Also |

(1 +h)—"6x><1 ~%> =(1—e(b+0)—4e/8)x > (1 —4/be)x.

Let E;, i=0,1,2,3, be a subdivision of the real line defined by
| Eo={yp:(1+h)""%<y<(1+h)F),
E,={y:|x— y| >4 bex},

E,={y:(1—4/be)x=y<(1+h)""5%)
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and

Ey={y:(1+h)3<y<(l+4/be)x}.
We will use the no\tation

bl E)=] plex,x=y) f(y) dy.
In the following lemma we show that for small &, the convolution p,, * f(x)
is concentrated in E, when x is large.

: :LEMMA 5.1.  There exists €y, &y such that for 0 <e<egy, 0 <9 <J,,

lim ¢,(x, E)/f“ " p(ex, x— ) f(») dy =0,  i=1,2,3. (5.1)

X — O

4 Pfoof. We will consider the three cases separately:

(1) For.i= 1, we have

f o~ (x—»)2ex g
[x—yl| > 4./ bex A

' 1
0<¢s(-x9 E‘l)< .
, / 2mex

1
< e—8bx‘

N/ 2mex

On the other hand,

#5 E)> [ plox, x— ) £(») dy

(1+h)x

>plex x—%) [ f(y)dy

> ! e~ b+ ((b+6)/2)e)x + o(x)

N/ 2nex

The two inequalities imply (5.1).

(it) For i=2, we observe that if (14 h) "xe E,, then

1+ 1) n>(1—4\/—)x 1 —4./be

“1—e(b+)
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Let n, denote the largest n so that (1+h4) "xe E,. For n5<n<n1, ‘we
define

¢(xF)
P F)’

where F=[x, (1+h)x], F,=[(1+h)"""'% (1+h)""x] for ny<n<ny,
and F, ——[(1—4\/_)x (1+h)~™x]. Then for ns<n<n,,

Qn(x) =

plex, x— (1 + h)—"jc') e—b((1+h)_s"'1)?+a,,(i))

Q.(x)=

— o+ 0n(%) — o(%)

where
@, =b(1=(1+h)7" ) —(1-(1 +h)™") <b+5 +% (1—(1 +h)f")>
and
0u(%) = o((1+ 1)~ 15).
We claim that a, <0. Indeed,
ay=(1+h) 7"~ bh— (1= (1+4h)™") (5 +-z- (1=(1 +»h)»_")>‘
<bh——(1—_(1»+h)_'f)‘2;2- |
< bh—é (1= (1+h)~"5)>

=bh—-(n;h+o(nsh))*
= (2bde + 0(de)) — (8¢ + o(d¢)).

Hence for 4, e sufficiently small, we have a,<0. This implies that
lim, , , Q,(x)=0 for ns<n<n,; and (5.1) follows.

(ii1) The case i=3 involves estimation of the terms
¢o(x, [(1 + h)"%, (1 + h)"*'X])/¢.(x, F).

The technique in (ii) applies similarly.
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“COROLLARY 5.2, * There exist. &y, 0o such that for 0 <g¢<egy, 0<6<dy,

_JOEmE . (x—yY plex, x— y) f(y) dy . N
lim 1Ay "% . 2 =1, =0,1,2. (52
x=o [P (x=yY plex, x—y) f(y) dy J (5:2)

Proof. The case for j=0is a direct consequence of Lemma 5.1. For the
case j=1, 2, we need only apply the same technique to show that -
i Jm 5= ) plex, x— ) f(y) dy _
cxeo [y (x—yY plex, x— y) f(y) dy

fori=1,2,3,j=1,2, as in Lemma 5.1. |
Recall that the solution of

v 10%

o 2ax2 Y

with initial condition f'is v(t, x) = e'p, * f(x).

PROPOSITION 5.3. For any >0, there exists &, such that for 0 <e<eg,,
we can find an x, which satisfies '
- (b + 77) U(S)C, .X) < v’(z—:x, x) < —(b - ’7) U(‘éxa X), X ZX,. (53)

Probf. It follows from direct calculation that v'(ex, x)=1I,—I,;+1,,

where

Lo e} o 1
I,= (.«3——%) eef J_OO plex, x—y) f(y)dy= <3—§> v(ex, x)

n=e [ B2 e ) 0y ay

and

.
n=e[" 2 pex v s

Let ¢ and & be as in Lemma 5.1; then for i=1, 2,

J,U e (x— y\)»"p(ex,‘ x—y)f(y)dy

(i +h)—ne% |
 r+R)R
<=+ [ 7 plex, x— ) f(») dy
_ (1+h)—"ox

< (2= (1= 44/8e + 0(\/5e( %)) (1 + 0(x) pos * £(x)
= x'(be + 0(y/36))(1 + 0(x)) pox * (%),
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and. - -

[ =y plen x— ) () dy
> (e (1 DL+ 0(x) pecs S(x)  (by (52))
= (bo+0(66))/(1 +0(x) po * £ ().

If we choose ¢;, 6, small enough, the above estimation and Lemma 5.2
implies inequality (5.3). |

LEMMA 54. For any n>0, there exists e, such that for any 0 <e<g,,
there exzsts azg (whzch depends on &) such that for z > Zo

—(b+1n)v(ex, x; f,)<v'(ex, x; f,), x=0, | (5.4)
where f,(x)=0 if x< 2 and f,(x)=f(x) if x=z.

Proof. Let x, h be deﬁned as before. For any # >0, there exists an €o
such that for each 0 <& < ¢, there exists an x, and for x> x,,

foo p(ax x—y)f(y) dy<<1 +2> f((Hh)x p(gx,';cfy)f(.){):dy .(5.5;) v

L+ k)=
and

- <b+g> vex, x; f)y<v'(ex, x; f). - (5.6)
Let 'z(,:(l +h)""x,=(14+h)""(1 —e(b+0))x,, and for z>z, let x,=

(L+ h)?(1.—e(b+6))~'z. We will show that (5.4) holds on the following
three sets: R NI S

(i) IfO<x<(l+¢2)z then

v'(ax,x;f»:e*f(a—i—"_%(’c””) plex, x— ) () dy

2 2x EX 2ex?.

[ G (g e nsos

= 0.

This implies. (5.1).
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(ii) For (1+¢&*)z<x<x,, we will perform the following estimates:

*(x—y)

——LOO (xt;y)p(sx, x——y)f(y) dy> —f, pex, x—y) f(y)dy

(xz—Z)

> " plex, x— ») £(») dy

=~ (b+0(/8) [ plex. x— ) (») .
Hence

U’(gx, X, fz) = (8 _5_7—(-_ b+ O(\/—g)) i f p(ax, X — y)f(y) dy,
and (5.4) holds if the preassigned ¢,, J, are small and x, is large.
- (iii) For x,<x, (5.5) and (5.6) will imply (5.4). 1

In Section 2, we showed that the solution of the K-P-P equation is of
-the form u(t, x)=v(t, x) — E(¢, x), and lim, _, . E(¢, x)/v(t, x) =0 if the
initial data f satisfy (2.1). In the following, we will show that E(ex, x),
E'(ex, x) are also small compared to v(ex, x) as x —» co. We will omit the
proof of the following lemma which is similar to Lemma 2.1 (we need only
split the integral into (— oo, x) and (x, co) for large x).

LEMMA 5.5. Suppose 0<e<1/b, then  for any 0<b’ < b,
lim,_, e p, * f(x)=0 uniformly in the region {(t, x): to<t<ex} for
to>0.

PROPOSITION 5.6. Suppose F(u)=0(u), where 0(u)= o(u log ~*u) for
some p > 1. Then there exists ¢, such that for 0 <e<g,,

(a) lim,_ o E(ex, x)/v(ex, x) =
(b) lim, . E'(ex, x)/v'(ex, x) = limx_, w E'(ex, x)/v(ex, x)=0.

Proof. For any 17>‘O, there exists d,, &, Xo >0 such that
(1) 0<O(u)<nlulog™* u| for u<d,,
(i) max{u(s, y):x/2< y} <e 5 for < s <eex, X = xo,
(iii) [*2, p(ex—s, x— y) dy <np,. * f(x) for y <5< EoX, X = Xg.

(Part (ii) follows from Lemma 5.5; (iii) follows from the same argument as
in the first part of the proof in Lemma 5.1.) For x > 2x,, 1 <s<gyX,
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[” plex—s,x~ ) 0(uts, »)) dy

x/2 . .

<7 f /21’(8?‘-_ s, X — y)-uls, y)- [log™ uls, y)| dy

X oo
<nmax {|log™u(s, y): =<y | plex—s, x—y)ep,* f(y)dy
, : 2 x/2

b\~
<n(%)  erunso

Now, by the same argument as Lemma 2.2, we can show that for x> x,,
0 < E(ex, x) < kne™p,, » f(x)

for some k> 0. This completes the proof of (a).
To prove (b), we note that

E'(ex, x) =eE(ex, x) + O(u(ex, x))

+ e J:xe—s fjo p'(ex, x — y) 0(u(s, »)) dy ds, (5.7

and

x_

p'(ex~s,x—y)_=( ys)p(sx_s,x_y)

ex —

(x—y)? 1
.,+ ’ (2(8x —5)? + 2(ex — )) plex—s,x—y)

0 g 02
= p('exv—‘_s, X=y)t5os plex—s, x— y), |

where 0/0x denotes the derlvatlve on the second variable. We w1ll estlmate.
the last term of (5.7). First, we claim that

; _.
—7 p(sx—»s,x—y)ps_*f(y) dy/—(-é-;pgx) * f(x)=1. (5.8)

EX — S8

Jim 7

Indeed, Corollary 5.2 implies that the intégral [ (8/0x) p(ax
x—y) f(y)dy is concentrated at ((1+h) ™x, (1+h)x)C(—oo x) for
large value ‘of x. This combined with

K

FO <x— )p(sxx y)ps*f(y)dy= f -—p(t—:x x—y) f(y)dy (59)

EX—S
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implies (5.8). Now by using the analogous reasoning as in the first part, we
have, for suitable &4, 4, xo and for 0 <& <eg,, x> X,

£x o0 a
0< —e [" e [T == plex—s,x— y) O(uls, »)) dy ds
0 —w 0X
ex EX s o0 s (e 0] x__y ) . B B .
<e L e f_we f_w ——| plex—s, x— ) 0(u(s, »)) dy ds

< =1+ o(1)e (7 per) # /()

where o(1) >0 and hm,H « 0(1)=0. Again by the same argument, we can
adjust the above ¢,, x,, 5, SO that for 0 <e < gy, x> x,,

&X e o) 62
0<e™ [ e [7 = plex—s, x— ») 0(uls, y)) dy ds

2

0
< neex (5}‘2‘ psx) * f(x)

(Note that in this case, (8%/0x2) p(ex —s, x — y) is positive, so the com-
plication involving the absolute value in (5.8) will not appear). Hence for
the above ¢ and x.

et J-sx e " J‘OO p'(&X—S, X — y) H(M(S, y)) dy ds
- 0 -

%) 0*
< 1+ o()e (5 pn )« S 45 e (o p) o 110,

Now part (b) follows from (5.7), Proposition 5.3, the estimation of 7, I, in
Proposition 5.3 and the above inequality. ||

Proof of Lemma 4.2. 1t follows directly from Pfopo_sitioh 53 and
Proposition 5.6. || '

Proof vof Lemma 4.3. Let >0, let x and f be define as in Lemma 4.2. If
X is chosen large enough, then parts (ii) and (iii) in the proof of
Proposition 5.6 can be modified to

(i) max{u(s, y; f): x/2<y} <e " n<s<eyx, x>0,
(iii)  [pex=22) plex, x — p) dy <np,, » F(x),
(72 p'(ex, x— y) dyl < |phe J(X)], n<5<gox, x> %,

(v) [2, [(x—y)(ex—s)| pex—s, x— y) p, * A y) dy
< —(1+n)((0/0x) p.x) * f(x), x=0.
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(Part (iv)’ can be obtained by a modification of the proof of (5.8).) By
using this, Proposition 5.6 can be strengthened to: there exists ¢, such that
for any 0 <e <¢, and for any # > 0, there exists X with

E(ex, x; J) < io(ex, x), | E'(ex, x; /)| <7l (ex, x)], x>0,

This and Lemma 5.4 will imply Lemma 4.3.

6. THE NECESSITY

We will prove the converse of Theorem 3.1 and Theorem 4.1 together,
the extra condition of F in Theorem 4.1 is not needed.

In [3, Proposition 4.27], Bramson showed that condition (3.1) or (4.1)
holds if and only if lim, , ,(1/¢) log v(¢, A1) =0, ie., v(¢t, At) = e°",

Assuming that lim, , ,, u(¢, m(z) + x) = w*(x) uniformly on x, we want to
show that lim,_ ., (1/t)logv(z, At)=0. That lim,_ .. (1/t)logv(¢, At) =0
follows from the first part of proof of [3, Theorem 2] with no change. We
will make a slight change on the proof of Iim,_, . (1/¢)log v(s, At)<0 in
order to free it from the Brownian motion argument. :

Supposing this is not true, we can find a § >0 such that

im e % v(t, (A+6)1)> 1 | | (6.1)

t — 00

[3, Lemma 4.4]. SinceAu(t, m(t)+ x) — w*(x) uniformly for xe (— o0, o)
as t— oo, we have lim,_ ,m(t)/t=21 As lim,_ , w'(x)=0, for any
0 <n < there exists ¢, such that

Ou(s, y))<11vu(s, ») on {(s, y):</1+—25->s<y, l‘1<s}. |
It follows from (2.1) that
Muﬂ=pwf@%ﬁgﬁ;p0—$x~wf@udmdwk
o Epe SR [ [T pl—sx— ) uls, ) dy ds

(A+ 8/2)s

>m*ﬂm+u—mjf pli=s,x~y)uls, y) dyds—a, (62)

t1 v — oo
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t p(A+8/2)s
wherea1=(1—n)J j p(t=s, x—y)dyds
! - ¥ —o0o . i ' .

(1+ A=)t = 1) pef @)+ (L= [ =) plt—s,x=y)

F(u(s, y))dy ds—a;  (by (62))

w (1 _,1)"(;__ tl)n . ., _ . ‘t (tv_s)n
= ¥ S pee S0+ lim (1 [
-fw p(t—s x—y) Flu(s, y)) dy ds — Z %y

n=1

p(t—s, x)——y) dy ds

— $Y' ((A+8/2)s
where o, —(1— )" L S)f ’

— 00

o0

__e(l—rr)(t—tl)p «fx)— Y a,

n=1

= (1, x)- e —m—m—t _ Z A,

n=1
‘Note that

o0 t l(l+5/2)s
S = et [T plr—s, x— y) dy ds

n=1 Ly — 00O

and for x = (A1 + 6)1¢, the integral can be shown to tend to zero as ¢ tends to
infinity. By (6.1), and 0 <7 <, we have '

Im u(z, (A+8)t)= lim v(t, (A+8)¢t) e —MU—1m)=1
t— © CLk -

l ~» 0O

llm e e(l“’l)(t—tl)_t:w.

[—»

This contradicts 0 < u(¢, x) <
Finally, the condition (3. 2) (and (4.2)) follows from the same argument
of Bramson [3, Sect. 5, Theorem 2].
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